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CHAPTER 1

Introduction

SKSurrogate is a suite of tools focused on designing and tuning machine learning pipelines and track the evolution
of simple modeling tasks. SKSurrogate is designed to employ Surrogate Optimization technique in a flexible way
which enjoys from the wealth of existing well-known python tools. It provides a ui to perform surrogate optimiza-
tion on general functions and has a familiar ui to perform hyperparameter tuning for scikit-learn compatible models.
Moreover, SKSurrogate uses surrogate optimization and evolutionary optimization algorithms to construct and
tune complex pipelines (automl) based on a set of given (scikit-learn compatible) models, like TPOT does.

Note that automl part is not designed to result in outstanding results in a few minutes, rather it needs hours if not days
to come up with a good result. There are various methods that speeds up the pipeline design/optimization process such
as selecting faster surrogates, fewer number of steps and evolutionary optimization settings.

The evolutionary optimization module is designed to be very flexible and can be modified to perform evolutionary
optimization on any given evolutionary compatible problem.

1.1 Dependencies

• NumPy,

• scipy,

• pandas,

• matplotlib,

• scikit-learn,

• ELI5,

• SALib,

• peewee.
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1.2 Download

SKSurrogate can be obtained from https://github.com/mghasemi/sksurrogate.

1.3 Installation

To install SKSurrogate, run the following in terminal:

sudo python setup.py install

1.4 Documentation

The documentation is produced by Sphinx and is intended to cover code usage as well as a bit of theory to explain
each method briefly. For more details refer to the documentation at sksurrogate.rtfd.io.

1.5 License

This code is distributed under MIT license:

1.5.1 MIT License

Copyright (c) 2022 Mehdi Ghasemi

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

2 Chapter 1. Introduction

https://github.com/mghasemi/sksurrogate
http://www.sphinx-doc.org/en/stable/
http://sksurrogate.readthedocs.io/
https://en.wikipedia.org/wiki/MIT_License


CHAPTER 2

Surrogate-Based Optimization

Surrogate-based optimization represents a class of optimization methodologies that make use of surrogate modeling
techniques to quickly find the local or global optima. It provides us a novel optimization framework in which the
conventional optimization algorithms, e.g. gradient-based or evolutionary algorithms are used for sub-optimization.

For optimization problems, surrogate models can be regarded as approximation models for the cost function and state
function, which are built from sampled data obtained by randomly probing the design space. Once the surrogate
models are built, an optimization algorithm can be used to search the new candidate, based on the surrogate models,
that is most likely to be the optimum. Since the prediction with a surrogate model is generally much more efficient
than that with a numerical analysis code, the computational cost associated with the search based on the surrogate
models is generally negligible. Surrogate modeling is referred to as a technique that makes use of the sampled data
to build surrogate models, which are sufficient to predict the output of an expensive function at untried points in the
feasibility space. Thus, how to choose sample points, how to build surrogate models, and how to evaluate the accuracy
of surrogate models are key issues for surrogate optimization.

3
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Fit a regressor and find a (local) minimum:

The following algorithm summarizes implemented Surrogate-Based Optimization for an expensive function 𝑓 that can

4 Chapter 2. Surrogate-Based Optimization
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only be evaluated MaxIter times with a minimum MinEvals random evaluations.

Note: set 𝐸 = ∅, 𝑁𝑢𝑚𝐼𝑡𝑒𝑟 = 0

while 𝑁𝑢𝑚𝐼𝑡𝑒𝑟 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do

sample a random point 𝑥0 from feasible space

if #(𝐸) < 𝑀𝑖𝑛𝐸𝑣𝑎𝑙𝑠 then update 𝐸 = 𝐸 ∪ {(𝑥0, 𝑓(𝑥0))}

else find a surrogate 𝑓 that fits the points in 𝐸

find the minimum 𝑥* of 𝑓 using 𝑥0 as the initial point (if required)

evaluate 𝑓 at 𝑥* and update 𝐸 = 𝐸 ∪ {(𝑥*, 𝑓(𝑥*))}

update 𝑁𝑢𝑚𝐼𝑡𝑒𝑟 = 𝑁𝑢𝑚𝐼𝑡𝑒𝑟 + 1

return the pair (𝑥, 𝑦) ∈ 𝐸 with lowest found value for 𝑦 as the approximation for the minimum of 𝑓

Clearly, there are various methods to accomplish some of the steps in the above algorithm like how to sample a new
point 𝑥0, how to find the surrogate 𝑓 , how to minimize and how to decide when we wish to use the surrogate.

2.1 Sampling

Three different sampling methods have been implemented and the SurrogateSearch class accepts user defined sampling
classes that have a certain signature.

2.1.1 CompactSample

This class samples a random point from the feasibility set.

2.1.2 BoxSample

This class samples a random point from a cube centered around a given point (usually the last point 𝑓 was evaluated
on) with a given length. It makes sure that the sample belongs to the feasibility set.

The length of the edges of the cube can be provided by setting init_radius (default: 2.)

A contraction ratio can be provided by setting contraction (should be bigger than 0 and less than 1) to shrink the
volume of the cube to assure fast convergence to a (local) optima (default value: 0.9).

2.1.3 SphereSample

This class samples a random point from a sphere centered around a given point (usually the last point 𝑓 was evaluated
on) with a given radius. It makes sure that the sample belongs to the feasibility set.

The radius of the sphere can be provided by setting init_radius (default: 2.)

A contraction ratio can be provided by setting contraction (should be bigger than 0 and less than 1) to shrink the radius
of the sphere to assure fast convergence to a (local) optima (default value: 0.9).

Note: The sampling method can be passed to an instance of SurrogateSearch via sampling parameter. Along with
sampling class, radius, contraction, ineq, and bounds may be provided to be used by the sampling class. ineq is a list

2.1. Sampling 5
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of callables which represent the constraints. bounds is a list of tuples of real numbers representing the bounds on each
variable.

Tip: A user-defined sampling class should follow the following structure:

class UserSample(object):
def __init__(self, **kwargs):

pass

def check_constraints(self, point):
"""
Checks constraints on the sample if provided;
`point` is the candidate to be checked;
should return a `boolean` True or False for if all constraints hold or not.
"""
pass

def sample(self, centre, cntrctn=1.):
"""
Samples a point out of an sphere centered at `centre`;

`centre` is a `numpy.array` the center of the sphere;
`cntrctn` is a `float` customized contraction factor
returns a `numpy.array` the new sample
"""
pass

2.2 Surrogate models

By default, SurrogateSearch uses a polynomial surface of degree 3 to approximate 𝑓 based on existing data and will
be updated on each iteration where a new piece of information a bout 𝑓 is found. Typically, any regressor inherited
from RegressorMixin that implements a fit and a predict method can be used.

2.3 Optimizer

A scipy optimizer can be used to find a minimum of the surrogate at each iteration. Note that if ineqs is not None,
then most of scipy optimizers can not be used. The optimizers that work well with constraints include ‘SLSQP’ and
‘COBYLA’.

An alternative for the scipy optimizer is ‘Optimithon’.

6 Chapter 2. Surrogate-Based Optimization



CHAPTER 3

Hyperparameter Optimization

Hyperparameter Optimization in machine learning with respect to a given performance measure (e.g., accuracy, f1,
auc, . . . ) usually is a computationally expensive task which fits within the scope of surrogate optimization technique.
In fact this is the main reason that the project exists. Therefore, there is a special class designed for hyperparame-
ter optimization of machine learning methods that follow the schema of the very popular machine learning library
scikit-learn. The class structsearch.SurrogateRandomCV is a substitute for scikit-learn’s GridSearchCV or Random-
izedSearchCV. An isntance of SurrogateRandomCV takes an estimator like GridSearchCV and RandomizedSearchCV
and a params parameter, like param_grid or param_distributions, which determines (ranges of) the values each argu-
ment of the estimator can take over. The difference is that not only it accepts discrete list of values for each parameter,
it also accepts ranges of integers and real numbers too. The params is a dictionary whose keys are the estimator’s
arguments and their values are objects of the followin types:

• Real(a, b): an interval of real numbers between 𝑎 and 𝑏;

• Integer(a, b): an interval of integer numbers between 𝑎 and 𝑏;

• Categorical(list): a list consists of discrete values;

• HDReal(a, b): An n dimensional box of real numbers corresponding to the classification groups (e.g.
class_weight). a is the tuple of lower bounds and b is the tuple of upper bounds.

Example The following code searches for the best values for a SVC:

from sklearn.svm import SVC
from SKSurrogate import *
clf = SVC()
params = {'C': Real(1.e-5, 10),

'kernel': Categorical(['poly', 'rbf']),
'degree': Integer(1, 4),
'gamma': Real(1.e-5, 10),
'class_weight': HDReal((1.e-3, 1.e-3), (10., 10.))}

srch = SurrogateRandomCV(clf, params)
srch.fit(X, y)
print(srch.best_estimator_)

Note: It is worth mentioning that using a Gaussian Process Regression as the regressor simulates a particular variation

7
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of the optimization method known as Bayesian Optimization method.

Bayesian Optimization is the method employed by the popular package skopt. The ui implemented for
SurrogateRandomCV is very much similar to the one of skopt.BayesSearchCV, so one could use the same
code for both given that the imports are carefully done.

Tip: The class SurrogateRandomCV works with intervals to handel the hyperparameters and the current sam-
pling classes do not impose extra constraints on SurrogateSearch other than ranges for parameters, alternative
scipy.minimize solvers can be used as well, such as L-BFGS-B, TNC, SLSQP.

8 Chapter 3. Hyperparameter Optimization

https://scikit-optimize.github.io/


CHAPTER 4

Hilbert Spaces

4.1 Orthonormal system of functions

Let X be a topological space and 𝜇 be a finite Borel measure on X. The bilinear function ⟨·, ·⟩ defined on 𝐿2(𝑋,𝜇) as
⟨𝑓, 𝑔⟩ =

∫︀
𝑋
𝑓𝑔𝑑𝜇 is an inner product which turns 𝐿2(𝑋,𝜇) into a Hilbert space.

Let us denote the family of all continuous real valued functions on a non-empty compact space X by C(𝑋). Suppose
that among elements of C(𝑋), a subfamily A of functions are of particular interest. Suppose that A is a subalgebra of
C(𝑋) containing constants. We say that an element 𝑓 ∈ C(𝑋) can be approximated by elements of A, if for every
𝜖 > 0, there exists 𝑝 ∈ 𝐴 such that |𝑓(𝑥) − 𝑝(𝑥)| < 𝜖 for every 𝑥 ∈ 𝑋 . The following classical results guarantees
when every 𝑓 ∈ C(𝑋) can be approximated by elements of A.

Let (𝑉, ⟨·, ·⟩) be an inner product space with ‖𝑣‖2 = ⟨𝑣, 𝑣⟩ 1
2 . A basis {𝑣𝛼}𝛼∈𝐼 is called an orthonormal basis for

V if ⟨𝑣𝛼, 𝑣𝛽⟩ = 𝛿𝛼𝛽 , where 𝛿𝛼𝛽 = 1 if and only if 𝛼 = 𝛽 and is equal to 0 otherwise. Every given set of linearly
independent vectors can be turned into a set of orthonormal vectors that spans the same sub vector space as the original.
The following well-known result gives an algorithm for producing such orthonormal from a set of linearly independent
vectors:

Note: Gram–Schmidt

Let (𝑉, ⟨·, ·⟩) be an inner product space. Suppose {𝑣𝑖}𝑛𝑖=1 is a set of linearly independent vectors in V. Let

𝑢1 :=
𝑣1

‖𝑣1‖2

and (inductively) let

𝑤𝑘 := 𝑣𝑘 −
𝑘−1∑︁
𝑖=1

⟨𝑣𝑘, 𝑢𝑖⟩𝑢𝑖 and 𝑢𝑘 :=
𝑤𝑘

‖𝑤𝑘‖2
.

Then {𝑢𝑖}𝑛𝑖=1 is an orthonormal collection, and for each k,

𝑠𝑝𝑎𝑛{𝑢1, 𝑢2, · · · , 𝑢𝑘} = 𝑠𝑝𝑎𝑛{𝑣1, 𝑣2, · · · , 𝑣𝑘}.

9
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Note that in the above note, we can even assume that 𝑛 = ∞.

Let 𝐵 = {𝑣1, 𝑣2, . . . } be an ordered basis for (𝑉, ⟨·, ·⟩). For any given vector 𝑤 ∈ 𝑉 and any initial segment of B, say
𝐵𝑛 = {𝑣1, . . . , 𝑣𝑛}, there exists a unique 𝑣 ∈ span(𝐵𝑛) such that ‖𝑤 − 𝑣‖2 is the minimum:

Note: Let 𝑤 ∈ 𝑉 and B a finite orthonormal set of vectors (not necessarily a basis). Then for 𝑣 =
∑︀

𝑢∈𝐵⟨𝑢,𝑤⟩𝑢

‖𝑤 − 𝑣‖2 = min
𝑧∈span(𝐵)

‖𝑤 − 𝑧‖2.

Now, let 𝜇 be a finite measure on X and for 𝑓, 𝑔 ∈ C(𝑋) define ⟨𝑓, 𝑔⟩ =
∫︀
𝑋
𝑓𝑔𝑑𝜇. This defines an inner product on

the space of functions. The norm induced by the inner product is denoted by ‖ · ‖2. It is evident that

‖𝑓‖2 ≤ ‖𝑓‖∞𝜇(𝑋), ∀𝑓 ∈ C(𝑋),

which implies that any good approximation in ‖ · ‖∞ gives a good ‖ · ‖2-approximation. But generally, our interest
is the other way around. Employing Gram-Schmidt procedure, we can find ‖ · ‖2 within any desired accuracy, but
this does not guarantee a good ‖ · ‖∞-approximation. The situation is favorable in finite dimensional case. Take
𝐵 = {𝑝1, . . . , 𝑝𝑛} ⊂ C(𝑋) and 𝑓 ∈ C(𝑋), then there exists 𝐾𝑓 > 0 such that for every 𝑔 ∈ span(𝐵 ∪ {𝑓}),

𝐾𝑓‖𝑔‖∞ ≤ ‖𝑔‖2≤‖𝑔‖∞𝜇(𝑋).

Since X is assumed to be compact, C(𝑋) is separable, i.e., C(𝑋) admits a countable dimensional dense subvector
space (e.g. polynomials for when X is a closed, bounded interval). Thus for every 𝑓 ∈ C(𝑋) and every 𝜖 > 0 one can
find a big enough finite B, such that the above inequality holds. In other words, good enough ‖ · ‖2-approximations of
f give good ‖ · ‖∞-approximations, as desired.

Example. Polynomial regression on 2-dimensional random data:

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from SKSurrogate.NpyProximation import HilbertRegressor, FunctionBasis
def randrange(n, vmin, vmax):

'''
Helper function to make an array of random numbers having shape (n, )
with each number distributed Uniform(vmin, vmax).
'''
return (vmax - vmin)*np.random.rand(n) + vmin

# degree of polynomials
deg = 2
FB = FunctionBasis()
B = FB.Poly(2, deg)
# initiate regressor
regressor = HilbertRegressor(base=B)
# number of random points
n = 20
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for c, m, zlow, zhigh in [('k', 'o', -5, -2.5)]:

xs = randrange(n, 2.3, 3.2)
ys = randrange(n, 0, 1.0)

(continues on next page)

10 Chapter 4. Hilbert Spaces
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(continued from previous page)

zs = randrange(n, zlow, zhigh)
ax.scatter(xs, ys, zs, c=c, s=10, marker=m)

ax.set_xlabel('$X$')
ax.set_ylabel('$Y$')
ax.set_zlabel('$f(X,Y)$')
X = np.array([np.array((xs[_], ys[_])) for _ in range(n)])
y = np.array([np.array((zs[_],)) for _ in range(n)])
X_ = np.arange(2.3, 3.2, 0.02)
Y_ = np.arange(0, 1.0, 0.02)
_X, _Y = np.meshgrid(X_, Y_)
# fit the regressor
regressor.fit(X, y)
# prepare the plot
Z = []
for idx in range(_X.shape[0]):

_X_ = _X[idx]
_Y_ = _Y[idx]
_Z_ = []
for jdx in range(_X.shape[1]):

t = np.array([np.array([_X_[jdx], _Y_[jdx]])])
_Z_.append(regressor.predict(t)[0])

Z.append(np.array(_Z_))
Z = np.array(Z)
surf = ax.plot_surface(_X, _Y, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False,
→˓alpha=.3)

4.1. Orthonormal system of functions 11
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CHAPTER 5

Sensitivity Analysis

This module could be easily taken off of this library. But one could take advantage of sensitivity analysis to reduce
the complexity of expensive models. Moreover, observations in practice shows significant gains in performance by
employing data preprocessing based on sensitivity analysis.

Sensitivity analysis is defined as the study of how the uncertainty in the output of a model can be apportioned to
sources of uncertainty in inputs.

Given a model 𝑦 = 𝑓(𝑥1, . . . , 𝑥𝑛), the following are standard sensitivity measures quantifying sensitivity of the model
with respect to 𝑥1, . . . , 𝑥𝑛:

5.1 Morris

The Morris method facilitates a global sensitivity analysis by making a number of local changes at different points of
the possible range of input values. The following quantities are usually measured regarding Morris method:

𝜇𝑖 =

∫︁
𝜕𝑓

𝜕𝑥𝑖
𝑑𝑥1 · · · 𝑑𝑥𝑛,

𝜇*
𝑖 =

∫︁
| 𝜕𝑓
𝜕𝑥𝑖

|𝑑𝑥1 · · · 𝑑𝑥𝑛,

𝜎𝑖 = 𝑉 𝑎𝑟(
𝜕𝑓

𝜕𝑥𝑖
).

Generally, 𝜇* is used to detect input factors with an important overall influence on the output. 𝜎 is used to detect
factors involved in interaction with other factors or whose effect is non-linear.

5.2 Sobol

The Sobol method (aka variance-based sensitivity analysis) works by decomposing the variance of the output of the
model into fractions which can be attributed to inputs or sets of inputs. The first-order indices are defined as:

𝑆𝑖 =
𝐷𝑖(𝑦)

𝑉 𝑎𝑟(𝑦)
, 𝑆𝑖𝑗 =

𝐷𝑖𝑗(𝑦)

𝑉 𝑎𝑟(𝑦)
, . . .

13
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where

𝐷𝑖(𝑦) = 𝑉 𝑎𝑟𝑥𝑖
(𝐸𝑥−𝑖

(𝑦|𝑥𝑖)), 𝐷𝑖𝑗(𝑦) = 𝑉 𝑎𝑟𝑥𝑖𝑗
(𝐸𝑥−𝑖𝑗

(𝑦|𝑥𝑖, 𝑥𝑗))− (𝐷𝑖(𝑦) +𝐷𝑗(𝑦)), . . . ,

and the total-effect index:

𝑆𝑇𝑖 =
𝐸𝑥−𝑖

(𝑉 𝑎𝑟𝑥𝑖
(𝑦|𝑥−𝑖))

𝑉 𝑎𝑟(𝑦)
= 1−

𝑉 𝑎𝑟𝑥−𝑖
(𝐸𝑥𝑖

(𝑦|𝑥−𝑖))

𝑉 𝑎𝑟(𝑦)
.

5.3 Moment-Independent 𝛿 Index

Let 𝑔𝑌 (𝑦) be the distribution of the values of 𝑦 and denote by 𝑔𝑌 |𝑥𝑖
(𝑦) the distribution of values of 𝑦 when the value

of 𝑥𝑖 is fixed. Let 𝑠(𝑥𝑖) =
∫︀
|𝑔𝑌 (𝑦)− 𝑔𝑌 |𝑥𝑖

(𝑦)|𝑑𝑦, then the delta index of 𝑥𝑖 is defined as:

𝛿𝑖 =
1

2

∫︁
𝑠(𝑥𝑖)𝑔𝑥𝑖

𝑑𝑥𝑖,

where 𝑔𝑥𝑖
(𝑥𝑖) is the distribution of the values of 𝑥𝑖.

Note: The class SensAprx acts as a scikit-learn wrapper as a transformer based on the sensitivity analysis library
SALib.

It accepts a scikit-learn compatible regressor at initiation, fits the regressor on the 𝑋, 𝑦 arguments of SensAprx.fit and
performs sensitivity analysis on the regressor.

• The type of analysis can be determined at initiation by choosing method among [‘sobol’, ‘morris’, ‘delta-mmnt’]
(default: ‘sobol’).

• After calling the fit method, coefficients are stored in SensAprx.weights_.

• After calling SensAprx.fit by calling SensAprx.transform(X) selects the top n features where n is given at initia-
tion through n_features_to_select.

• It is easier to do sensitivity analysis on functions using SALib’s ui, but if one prefers using scikit-learn’s wrapper,
then the function should be modified to resemble a scikit-learn regressor which simply ignores training data.

14 Chapter 5. Sensitivity Analysis
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CHAPTER 6

Eliminate features based on Pearson correlation

The Pearson correlation is widely used to eliminate some of highly correlated features to reduce the number of features.
Surprisingly, there is no scikit-learn compatible code implementing feature selection according to a given correlation
threshold (at the time publishing this library).

Although, it sound like an easy task to do, it is not clear how to select a minimal set of features with low correlation
and which ones can be safely excluded.

SKSurrogate.sensapprx.CorrelationThreshold implements the following algorithm to select a minimal set of features
with correlation below a given threshold:

Note: Input: the set of all variables 𝑉 , a positive threshold 𝑡

Output a subset 𝑊 ⊆ 𝑉 where ∀𝑎, 𝑏 ∈ 𝑊 |𝑐𝑜𝑟𝑟(𝑎, 𝑏)| < 𝑡

set 𝑃 := the set of all pairs (𝑎, 𝑏) ∈ 𝑉 × 𝑉 where |𝑐𝑜𝑟𝑟(𝑎, 𝑏)| ≥ 𝑡

set 𝑊 := {𝑣 ∈ 𝑉 : ∀𝑥 ∈ 𝑉 |𝑐𝑜𝑟𝑟(𝑣, 𝑥)| < 𝑡}

while 𝑃 ̸= ∅ do: form the undirected graph 𝐺 = 𝐺(𝑉 ∖𝑊,𝑃 ) find a node 𝑤 ∈ 𝑉 ∖𝑊 with highest degree update
𝑊 := 𝑊 ∪ {𝑤} remove all pairs from 𝑃 involving 𝑤

return 𝑊

The above procedure selects those features which has high (positive or negative) correlation with higher number of
other features and omits the other features. Repeats this process until no more pair with high correlation remains.

15
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CHAPTER 7

Evolutionary Optimization Algorithms

An Evolutionary Algorithm (EA) uses mechanisms inspired by biological evolution, such as reproduction, mutation,
recombination and selection. Candidate solutions to the optimization problem play the role of individuals in population
and the fitness function determines the quality of the solution. Evolution of the population then takes place after the
repeated application of the above operators.

7.1 A General Evolutionary Optimization Algorithm

A typical evolutionary optimization algorithm consists of the following four operations: reproduction, mutation, re-
combination and selection and elitism. These operations are usually performed in the following order with many
variations:

Note: Randomly generate a population −→ Parents

While not (Termination criterion):

Calculate the fitness of all Parents

Best 𝐸 Parents −→ Elites

∅ −→ Children

While #(Children) < #(Parents):

Use fitness to probabilistically select pairs of Parents for recombination

Recombine (Mate) Parents to create Children 𝑐1, 𝑐2

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∪ {𝑐1, 𝑐2}

Randomly mutate Children

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∪ 𝐸𝑙𝑖𝑡𝑒𝑠 −→ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠

Best 𝑁 Parents −→ Parents

17
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The above algorithm is implemented in eoa.EOA. An instance of this class requires two mandatory inputs: (1) pop-
ulation which is a list, consisting of all possible individuals, and (2) fitness which is a function that accepts a list of
individuals and returns an OrderedDict with individuals as its keys and their fitness as values.

The individuals are assumed to be python tuples, typically generated by aml.Words. An instance of aml.Words requires
a list of alphabets letters. If one requires a restiction on those letters that can appear at the end of a tuple or at the
begining (as well as other positions in a tuple) then they should be indicated as parameters first and last. The parameter
repeat indicated whether consecutive appearance of letters is allowed or not. The method Words.Generate takes a
parameter as the length of tuples and produces the list of all legitimate tuples of a given length.

The first step in the above algorithm is selecting a random subset of the population as initial parents. One may consider
various factors to impact on the initial parents such as the length of individuals, initial letters, etc. The default selection
strategy for eoa.EOA is simply selecting a random population of a certain size. This behaviour can be changed by
specifying the init_pop parameter of the EOA class (default eoa.UniformRand). init_pop accepts user-defined classes
as input, but it assumes that the user-defined class implements a __call__ method whose first input should be the
parent instance of the EOA class, which iplies that the user-defined class has access to all properties of the parent
EOA instance. This remains the default coding MO for other user-defined classes that will be accepted by EOA. The
__call__ should return an OrderedDict whose keys are individuals from population and their values are their fitness,
that may have been calculated before and stores in EOA.evals which itself is an OrderedDict of similar type.

The eoa.EOA requires a termination criterion too. The defaulkt tewrmination criterion is set to be reaching a cer-
tain number of generations. This can be modified by specifying a user-defined termination class. A user-defined
termination criterion is a class that implements __call__ which accepts the parent instance of the EOA. The default
termination criterion is eoa.MaxGenTermination which checks whether the max_generations is reached or not. The
max_generations can be specified on initialization of the EOA instance by setting the max_generations. The __call__
method should return a boolean indicating the satisfaction of the termination criterion.

To Select mating parents and produce their children, eoa.EOA uses a class provided to the instance of the EOA via
recomb parameter. The default class is eoa.UniformCrossover. UniformCrossover uses the parents fitness to bias
toward those that are most fit for mating and selects them probabilistically, the higher the fitness value, the higher the
chance of finding a mate. After the pairing procedure, we then recombine the pairs (𝑝1, 𝑝2) to produce two children.
The default procedure, chooses a random integer 1 ≤ 𝑙 ≤ max(#(𝑝1),#(𝑝2)), put identity functions at the beginning
of the shorter parent to make their length equal. Then cut them at 𝑙𝑡ℎ position and combine the initial part of 𝑝1 with
later part of 𝑝2 and initial part of 𝑝2 with later part of 𝑝1 to produce children.

𝑝1: 𝑔1 . . . 𝑔𝑙−1 𝑔𝑙 . . . 𝑔𝑛
𝑝2: ℎ1 . . . ℎ𝑙−1 ℎ𝑙 . . . ℎ𝑛

⇓

𝑐1: 𝑔1 . . . 𝑔𝑙−1 ℎ𝑙 . . . ℎ𝑛

𝑐2: ℎ1 . . . ℎ𝑙−1 𝑔𝑙 . . . 𝑔𝑛

If #(𝑝1) = #(𝑝2) = 1, then UniformCrossover simply puts 𝑐1 = (𝑝1, 𝑝2) and 𝑐2 = (𝑝2, 𝑝1).

Note that a user-defined mating class needs to implement a __call__ method which accepts the parent EOA instance
and sets its children method as an OrderedDict whose keys are the individuals and their values are their fitness. It is
recommended to sort the children dictionary by its values before returning.

The next step is mutation. This process assures that even isolated individuals in the population has a chance to be
explored. The default behaviour of eoa.EOA is implemented as eoa.Mutation which uses mutation_prob (default =
0.05) to randomly changes entities of each child. More accurately, each element of a child, will be changed into another
(legitimate) element with probability mutation_prob. Again, the default behaviour can be modified by specifying a
user-defined class which implement a __call__ method accepting the parent instance of EOA and modifies its .children
dictionary and their fitness.
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The last step in this implementation is called elitism. The purpose of the elitism is to keep those parents that are
better fit compare to some of the children among the next generation parents. The default behaviour of eoa.EOA is
implemented as eoa.Elites and can be modified by assigning a user-defined class to elitism parameter of eoa.EOA.
The user-defined class requires to implement a __call__ method that accepts the parent EOA instance and modifies the
parent’s children.

7.1.1 Example

The following is a synthetic example on a small set of letters and a fitness based on ASCI code and length of individ-
uals:

# prepare the whole population
P = Words(['a', 'b', 'c', 'd', '1', '2'], last=['1', '2', '3'], repeat=True)
Pop = P.Generate(1) + P.Generate(2) + P.Generate(3) + P.Generate(4) +

P.Generate(5) + P.Generate(6) + P.Generate(7)
# initiate the EOA instance
gen = EOA(population=Pop, fitness=sfit, num_parents=100, mutation_prob=.1, term_
→˓genes=['1', '2'])
# run the EOA
gen()
# get the most fit individual found and print
best = next(reversed(tst.children))
print(best, tst.children[best])

produces the following output:

100%|##########| 50/50 [00:00<00:00, 769.22it/s]
('1', '1', '1', '1', '1', '1', '1') 10.149999999999999

7.1. A General Evolutionary Optimization Algorithm 19
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CHAPTER 8

Optimized Pipeline Detector

In this part, we speculate about possibility of searching for optimized pipelines that perform some preprocessing, sen-
sitivity analysis, and composing estimators to achieve an optimum performance measure, based on a pre-determined
set of operators and estimators, all inherited from scikit-learn’s base classes.

Suppose that we have some data transformers T = {𝑇1, . . . , 𝑇𝑘} and some estimators E = {𝐸1, . . . , 𝐸𝑚} and willing
to find a composition 𝑃 = 𝐹1 ∘ 𝐹2 ∘ · · · ∘ 𝐹𝑛 where 𝐹1 ∈ E and 𝐹𝑖 ∈ T ∪ E for 𝑖 = 2, . . . , 𝑛 and the composition is
optimal with respect to a given performance measure. Each estimator/transformer may accept a number of parameters,
discrete or continuous. Note that there are 𝑚× (𝑚+ 𝑘)𝑛−1 different combinations based on T and E. So, the number
of possible pipelines grows exponentially as the number of building blocks increase. Now, if we want to examine all
possible combinations of at most 𝑁 estimator/transformer, the domain would be of the form

U =

𝑁⋃︁
𝑛=1

E× (E ∪ T)𝑛−1.

each element of U corresponds to infinitely many functions as the set of acceptable hyperparameters for each one is
potentially infinite. Suppose that 𝑃 ∈ U and �̃� is the set of its parameters. We use surrogate optimization to find

�̃�𝑃 = argmax�̃�𝜇(𝑃 (�̃�)(𝑋)),

(or argmax depending on the task) where 𝑋 is the test set, 𝜇 is the performance and deal with the elements of

Ũ = {𝑃 (�̃�𝑃 ) : 𝑃 ∈ U},

that are already optimized with respect to their hyperparameters. This reduces the optimized pipeline detection to
searching Ũ to find an optimum pipeline. This is still a very heavy task to accomplish given the number of elements
in U and the computational intensity of a surrogate optimization. Fortunately, the format of the elements of U is very
much suggestive and demands for a genetic algorithm to reach an optima.

The AML class accepts a set of estimators and transformers, dictionaries of their parameters that can be changed, and
searches the space of possible pipelines either exhaustively or according to an evolutionary set up to find an optimum
pipeline.

Think of machine learning pipelines as Lego blocks with each stud representing a step in the pipeline. The following
diagram summarizes the whole evolutionary process implemented to detect the optimal pipeline:
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Example 1: The following is a classification based on sk-rebate data:

# Find an optimum classification pipeline

import pandas as pd
import numpy as np
from sklearn.model_selection import RandomizedSearchCV
from sklearn.kernel_ridge import KernelRidge
from sklearn.gaussian_process.kernels import Matern, Sum, ExpSineSquared
from SKSurrogate import *

param_grid_krr = {
"alpha": np.logspace(-4, 0, 5),
"kernel": [

Sum(Matern(), ExpSineSquared(l, p))
for l in np.logspace(-2, 2, 10)
for p in np.logspace(0, 2, 10)

],
}
regressor = RandomizedSearchCV(

KernelRidge(), param_distributions=param_grid_krr, n_iter=5, cv=2
)

config = {
# Classifiers
"sklearn.naive_bayes.GaussianNB": {"var_smoothing": Real(1.0e-9, 2.0e-1)},
"sklearn.linear_model.LogisticRegression": {

"penalty": Categorical(["l1", "l2"]),
"C": Real(1.0e-6, 10.0),
"class_weight": HDReal((1.0e-5, 1.0e-5), (20.0, 20.0))

(continues on next page)
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(continued from previous page)

# 'dual': Categorical([True, False])
},
"sklearn.svm.SVC": {

"C": Real(1e-6, 20.0),
"gamma": Real(1e-6, 10.0),
"tol": Real(1e-6, 10.0),
"class_weight": HDReal((1.0e-5, 1.0e-5), (20.0, 20.0)),

},
"lightgbm.LGBMClassifier": {

"boosting_type": Categorical(["gbdt", "dart", "goss", "rf"]),
"num_leaves": Integer(2, 100),
"learning_rate": Real(1.0e-7, 1.0 - 1.0e-6), # prior='uniform'),
"n_estimators": Integer(5, 250),
"min_split_gain": Real(0.0, 1.0), # prior='uniform'),
"subsample": Real(1.0e-6, 1.0), # prior='uniform'),
"importance_type": Categorical(["split", "gain"]),

},
# Preprocesssors
"sklearn.preprocessing.StandardScaler": {

"with_mean": Categorical([True, False]),
"with_std": Categorical([True, False]),

},
"skrebate.ReliefF": {

"n_features_to_select": Integer(2, 10),
"n_neighbors": Integer(2, 10),

},
# Sensitivity Analysis
"SKSurrogate.sensapprx.SensAprx": {

"n_features_to_select": Integer(2, 20),
"method": Categorical(["sobol", "morris", "delta-mmnt"]),
"regressor": Categorical([None, regressor]),

},
}
import warnings

warnings.filterwarnings("ignore", category=Warning)

genetic_data = pd.read_csv(
"https://github.com/EpistasisLab/scikit-rebate/raw/master/data/"
"GAMETES_Epistasis_2-Way_20atts_0.4H_EDM-1_1.tsv.gz",
sep="\t",
compression="gzip",

)
X, y = genetic_data.drop("class", axis=1).values, genetic_data["class"].values

A = AML(config=config, length=3, check_point="./", verbose=2)
A.eoa_fit(X, y, max_generation=10, num_parents=10)
print(A.get_top(5))

In order to perform an exhaustive search on all possible pipelines just replace the last line with the following:

A.fit(X, y)

We can retrieve the top n models via A.get_top(n).

Example 2: The following is a regression based on Airfoil Self-Noise Data Set data:

23
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# Find an optimum regression pipeline

import pandas as pd
import numpy as np
from sklearn.model_selection import RandomizedSearchCV
from sklearn.kernel_ridge import KernelRidge
from sklearn.gaussian_process.kernels import Matern, Sum, ExpSineSquared
from SKSurrogate import *

config = {
# Regressors
"sklearn.linear_model.LinearRegression": {"normalize": Categorical([True, False])}

→˓,
"sklearn.kernel_ridge.KernelRidge": {

"alpha": Real(1.0e-4, 10.0),
"kernel": Categorical(

[
Sum(Matern(), ExpSineSquared(l, p))
for l in np.logspace(-2, 2, 10)
for p in np.logspace(0, 2, 10)

]
),

},
# Preprocesssors
"sklearn.preprocessing.StandardScaler": {

"with_mean": Categorical([True, False]),
"with_std": Categorical([True, False]),

},
"sklearn.preprocessing.Normalizer": {"norm": Categorical(["l1", "l2", "max"])},
# Feature Selectors
"sklearn.feature_selection.VarianceThreshold": {"threshold": Real(0.0, 0.3)},

}
import warnings

warnings.filterwarnings("ignore", category=Warning)

df = pd.read_csv(
"https://archive.ics.uci.edu/ml/machine-learning-databases/00291/airfoil_self_

→˓noise.dat",
sep="\t",
names=["Frequency", "Angle", "length", "velocity", "thickness", "level"],

)
X = df.drop("level", axis=1).values
y = df["level"].values

A = AML(
config=config,
length=3,
check_point="./",
verbose=2,
scoring="neg_mean_squared_error",

)
A.eoa_fit(X, y, max_generation=12, num_parents=12)
print(A.get_top(5))
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8.1 Some Technical Notes

It should be evident from the example that the config dictionary’s keys could point to any module that is available
from the working folder. The only constraint is that the classes being used must inherit from sklearn.base.
BaseEstimator, RegressorMixin, ClassifierMixin, TransformerMixin or imblearn.base.
SamplerMixin, BaseSampler.

The last estimator will always be selected from either RegressorMixin or ClassifierMixin. The case of
imblearn.base.SamplerMixin, BaseSampler can only occur at the beginning of the pipeline. The rest
could be RegressorMixin, ClassifierMixin or TransformerMixin.

8.1.1 Stacking

If a non TransformerMixin occurs in the middle, then by StackingEstimator it will transform the data to
append columns based on the outcome of RegressorMixin or ClassifierMixin.

8.1.2 Permutation Importance

If sklearn.pipeline.FeatureUnion is included within the config dictionary, in the scope of a pipeline two
scenarios are plausible:

• ‘FeatureUnion‘ is followed by a series of transformations: in this case FeatureUnion does exactly what is
expected, i.e., gathers all the feature outputs of transformers;

• ‘FeatureUnion‘ is followed by a mixture of transformations and estimators: then SKSurrogate uses
eli5.sklearn.PermutationImportance to weight the features based on the estima-
tors and AML’s scoring and then selects top features via sklearn.feature_selection.
SelectFromModel.

Not all transformers select a subset of of features (e.g., Normalizer or StandardScaler). If FeatureUnion is followed
by such transformers, it does not have any effect on the outcome of the transformer. If the transformer selects a
subset of features (VarianceThreshold, skrebate.ReliefF) then FeatureUnion collects the outcomes and returns the
union. This is also true for PermutationImportance. The FeatureUnion affects the following transformers and es-
timators until it reaches the last step or a transformer which is not a feature selector. Subclasses of sklearn.
feature_selection.base.SelectorMixin are considered as feature selectors. Also, the following trans-
formers are considered as feature selectors:

• FactorAnalysis

• FastICA

• IncrementalPCA

• KernelPCA

• LatentDirichletAllocation

• MiniBatchDictionaryLearning

• MiniBatchSparsePCA

• NMF

• PCA

• SparsePCA

• TruncatedSVD

• VarianceThreshold
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• LocallyLinearEmbedding

• Isomap

• MDS

• SpectralEmbedding

• TSNE

• sksurrogate.SensAprx

• skrebate.ReliefF

• skrebate.SURF

• skrebate.SURFstar

• skrebate.MultiSURF

• skrebate.MultiSURFstar

• skrebate.TuRF

8.1.3 imblearn pipelines

If an imblearn sampler is included in the config dictionary, then imblearn.pipeline.Pipelinewill be used
instead of sklearn.pipeline.Pipeline which enables the Pipeline to use imblearn samples too.

8.1.4 Categorical Variables

In case there are fields in the data that need to be treated as categorical, one could provide a list of indices through
cat_cols. Then, the data will be transformed via category_encoders.one_hot.OneHotEncoder before
being passed to the pipelines.
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CHAPTER 9

Automated Data Type Recognition

In most ML scenarios, most of the development and deployment tasks deal with data input pipelines. A data pipeline
handles data intake, linkage, type detection, and missing data imputation. SKSurrogate covers the later two stapes
automatically and allows for customization as well. This is done via the DataProcess module.

Currently, the DataProcess module identifies the following data types automatically:

• Binary

• Categorical

• Date/Time

• Float

• Integer

• Label

• Text

• Objects

We note that the Object type could include various types which may have a known structure but are not implemented
in the module yet.

The following example demonstrates the basic functions of the DataProcess module.

9.1 Example:

Randomly generated dataframe with various types of data:

import numpy as np
import pandas as pd
import random
from lorem_text import lorem

(continues on next page)
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(continued from previous page)

N = 100
categorical = np.array([random.choice(['Cat01', 'Cat02', 'Cat03', 'Cate04', None])
→˓for _ in range(N)])
binary = np.array([random.choice(['Bin0', 'Bin1', None]) for _ in range(N)])
float1 = np.random.uniform(low=-2.0, high=4.0, size=N)
float2 = np.random.uniform(low=0.0, high=10.0, size=N)
int1 = np.random.randint(0, high=20, size=N)

def random_str(max_len=15):
chars = [' '] + [chr(_) for _ in range(ord('a'), ord('z')+1)] + [' ']+ [chr(_)

→˓for _ in range(ord('A'), ord('Z')+1)] + [' ']
ln = random.randint(0, max_len)
rand_list = [random.choice(chars) for _ in range(ln)]
return ''.join(rand_list)

def random_date(init_date, date_range=30):
offset = random.randint(0, date_range)
new_date = np.datetime64(init_date) + offset
return new_date

strs = [random_str() for _ in range(N)]
dates = [random_date("2021-03-01", 60) for _ in range(N)]

texts = [lorem.sentence() for _ in range(N)]

frame = dict()
frame['categorical'] = categorical
frame['binary'] = binary
frame['float1'] = float1
frame['float2'] = float2
frame['int1'] = int1
frame['str'] = strs
frame['date'] = dates
frame['txt'] = texts
df = pd.DataFrame(frame)
df = df.astype({'txt':pd.StringDtype()})

Import and process the sample dataframe:

from SKSurrogate import *
A = DataPreprocess(df)
A.deduce_types()
A.deduced_types

which returns:

{'float64': ['float1', 'float2'],
'int64': ['int1'],
'datetime64': ['date'],
'other': [],
'text': ['txt'],
'binary': ['binary'],
'categorical': ['categorical'],
'label': ['str'],
'obsolete': []}

Then:
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A.encode()
print(A.steps)

The output is a SK-Learn compatible pipeline:

[('OneHot',
OneHotEncoder(cols=['categorical'], drop_invariant=True,

handle_missing='return_nan', handle_unknown='return_nan')),
('Ordinal',
OrdinalEncoder(cols=['binary', 'str'], handle_missing='return_nan',

handle_unknown='return_nan',
mapping=[{'col': 'binary', 'mapping': {'Bin0': 0, 'Bin1': 1}},

{'col': 'str',
'mapping': {'': 0, ' ': 1, ' DmTHDRQErIhF': 2,

' FmseqO': 3, ' j knr': 4, ' pcG': 5,
'AVJVq nsqyHRpM': 6, 'AYihJxhUbN ': 7,
'Agpg': 8, 'C': 9, 'CKJ': 10, 'CcnGK': 11,
'D': 12, 'DkMstNYdjoRj ': 13, 'EITp': 14,
'FAWrCVv': 15, 'FKgFwuGLmQqLR': 16,
'FVtvoWBCEEi': 17, 'G T oVPh': 18,
'GAxyFGqpzrJXe': 19, 'GYfNntcQww': 20,
'HB euaV YFIb': 21, 'IENmSCFiAECp': 22,
'IGZRolGBCKLsyg': 23,
'J mNPFImkjd iRw': 24, 'JW': 25,
'KSKpIlRm': 26, 'KevYeZyrsvwY': 27,
'KhNjalpZkqxFGBC': 28,
'KjtCfjg PZrx k ': 29, ...}}])),

('Date2Num', DateTime2Num(cols=['date'])),
('Impute', IterativeImputer())]
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CHAPTER 10

A machine learning progress tracker

When exploring for reasonable methods to model a problem, usually the search quickly results in a large number of
candidates and it becomes very difficult to keep track of all models and their performance measures. There are various
existing solutions, usually forcing to follow a particular workflow, which could be very beneficial. The present module
tends to be very light, with minimal dependency and minimal effect of the workflow.

mltrace loves the scikit-learn compatible models and provides many tools to work with them. The vision and hence
design of mltrace is based on the believe that most machine learning projects can be turned into a study on a certain
dataset. Although, as the project progresses, features may be added to or dropped from the original data, but in most
cases there is a systematic method to derive these changes from the original source. Therefore, mltrace isolates a task
together with a dataset and the associated models.

Let us make up a sample classification task and trace the models via mltrace.

Step 0. Make a sample classification dataset:

# import requires libraries
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification
from SKSurrogate import *
# make up a classification dataset
X, y = make_classification(n_samples=1000, n_features=10, n_informative=6, n_
→˓redundant=2)
Xy = np.hstack((X, np.reshape(y, (-1, 1))))
# make up some names for columns of the data
cols = ['cl%d'%(_+1) for _ in range(10)] + ['target']
# turn it into a pandas DataFrame
df = np2df(Xy, cols)()

Step 1. Initiate the tracker and register the data:

# initialize the tracker with a task called 'sample'
MLTr = mltrack('sample', db_name="sample.db")
# register the data
MLTr.RegisterData(df, 'target')

(continues on next page)
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# modify the description of the task
MLTr.UpdateTask({'description': "This is a sample task to demonstrate\\

capabilities of the mltrace."})

Step 2. Get to know the data by visualizing correlations and sensitivities:

from sklearn.gaussian_process.kernels import Matern, Sum, ExpSineSquared
from sklearn.kernel_ridge import KernelRidge
from sklearn.model_selection import RandomizedSearchCV
# use a regressor to approximate the data
param_grid_kr = {"alpha": np.logspace(-4, 1, 20),

"kernel": [Sum(Matern(), ExpSineSquared(l, p))
for l in np.logspace(-2, 2, 10)
for p in np.logspace(0, 2, 10)]}

rgs = RandomizedSearchCV(KernelRidge(),
param_distributions=param_grid_kr, n_iter=10, cv=2)

# ask for specific weights to be calculated and recorded
MLTr.FeatureWeights(regressor=rgs,

weights=('pearson', 'sobol', 'morris', 'delta-mmnt'))
# visualise
plt1 = MLTr.heatmap(sort_by='pearson')
plt1.show()
cor = df.corr()
plt2 = p = MLTr.heatmap(cor, idx_col=None, cmap='rainbow')
plt2.show()

Step 3. Examine and log a random forest model and its metrics:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score, ShuffleSplit
# retrieve data

(continues on next page)
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X, y = MLTr.get_data()
# init classifier
clf = RandomForestClassifier(n_estimators=50)
# log the classifier
clf = MLTr.LogModel(clf, "RandomForestClassifier(50)")
# find the average metrics
print(MLTr.LogMetrics(clf, cv=ShuffleSplit(5, .25)))
# {'accuracy': 0.8816, 'auc': 0.9504791437613562, 'precision': 0.9029848807772192,
# 'f1': 0.8782525829634803, 'recall': 0.8554950898148654, 'mcc': 0.7640884799286114,
# 'logloss': 4.089427586800243, 'variance': None, 'max_error': None, 'mse': None,
# 'mae': None, 'r2': None}

Step 4. Search for best (in terms of accuracy) classifier as a combination of naive_bayes.GaussianNB,
linear_model.LogisticRegression, lightgbm.LGBMClassifier, preprocessing.
StandardScaler, and preprocessing.Normalizer:

from SKSurrogate import *
# set up the confic dictionary
config = {

# estimators
'sklearn.naive_bayes.GaussianNB': {

'var_smoothing': Real(1.e-9, 2.e-1)
},
'sklearn.linear_model.LogisticRegression': {

'penalty': Categorical(["l1", "l2"]),
'C': Real(1.e-6, 10.),
"class_weight": HDReal((1.e-5, 1.e-5), (20., 20.))

},
"lightgbm.LGBMClassifier": {

"boosting_type": Categorical(['gbdt', 'dart', 'goss', 'rf']),
"num_leaves": Integer(2, 100),
"learning_rate": Real(1.e-7, 1. - 1.e-6), # prior='uniform'),
"n_estimators": Integer(5, 250),
"min_split_gain": Real(0., 1.), # prior='uniform'),
"subsample": Real(1.e-6, 1.), # prior='uniform'),
"importance_type": Categorical(['split', 'gain'])

},
# preprocessing
'sklearn.preprocessing.StandardScaler': {

'with_mean': Categorical([True, False]),
'with_std': Categorical([True, False]),

},
'sklearn.preprocessing.Normalizer': {

'norm': Categorical(['l1', 'l2', 'max'])
},

}
# initiate and perform the search
A = AML(config=config, length=3, check_point='./sample/', verbose=1)
A.eoa_fit(X, y, max_generation=15, num_parents=20)
# retrieve and log the best
eoa_clf = A.best_estimator_
eoa_clf = MLTr.LogModel(eoa_clf, "Best of EOA Surrogate Search")
print(MLTr.LogMetrics(eoa_clf, cv=ShuffleSplit(5, .25)))
MLTr.PreserveModel(eoa_clf)
# {'accuracy': 0.8824, 'auc': 0.9207884992789751, 'precision': 0.8930688738450767,
# 'f1': 0.8789651291713657, 'recall': 0.8664344690110679, 'mcc': 0.7657250436230718,

(continues on next page)
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# 'logloss': 4.061801043429923, 'variance': None, 'max_error': None, 'mse': None,
# 'mae': None, 'r2': None}

Step 5. Plot learning curves for accuracy, 𝐹1, area under ROC, calibration lift and cumulative curves for the
two models:

# the best of EOA Surrogate Search
MLTr.plot_learning_curve(eoa_clf, "Best of Surrogate Search", cv=ShuffleSplit(5, .
→˓25), measure='accuracy')
MLTr.plot_learning_curve(eoa_clf, "Best of Surrogate Search", cv=ShuffleSplit(5, .
→˓25), measure='f1')
MLTr.plot_learning_curve(eoa_clf, "Best of Surrogate Search", cv=ShuffleSplit(5, .
→˓25), measure='roc_auc')
MLTr.plot_calibration_curve(eoa_clf, "Best of Surrogate Search")
MLTr.plot_cumulative_gain(eoa_clf, title="Best: Cumulative Gains Curve")
MLTr.plot_lift_curve(eoa_clf, title="Best: Lift Curve")
# Random Forest
MLTr.plot_learning_curve(clf, "Random Forest", cv=ShuffleSplit(5, .25), measure=
→˓'accuracy')
MLTr.plot_learning_curve(clf, "Random Forest", cv=ShuffleSplit(5, .25), measure=
→˓'f1')
MLTr.plot_learning_curve(clf, "Random Forest", cv=ShuffleSplit(5, .25), measure=
→˓'roc_auc')
MLTr.plot_calibration_curve(clf, "Random Forest")
MLTr.plot_cumulative_gain(clf, title="Random Forest: Cumulative Gains Curve")
MLTr.plot_lift_curve(clf, title="Random Forest: Lift Curve")

The Best of EOA
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10.1 SVM Classifier with RBF v.s. SGDClassifier with Kernels

We try to see whether SVM classifiers with RBF kernel and SGDClassifres with kernel can compare. We set up
a quick SKSurrogate search with SVC and NuSVC as classifiers and another quick SKSurrogate search over
SGDClassifier, Nystroem and RBFSampler kernels:

import numpy as np
from SKSurrogate import *
import warnings
warnings.filterwarnings("ignore", category=Warning)

from sklearn.model_selection import RandomizedSearchCV
from sklearn.kernel_ridge import KernelRidge
from sklearn.gaussian_process.kernels import Matern, Sum, ExpSineSquared
param_grid_krr = {"alpha": np.logspace(-4, 0, 5),

"kernel": [Sum(Matern(), ExpSineSquared(l, p))
for l in np.logspace(-2, 2, 10)
for p in np.logspace(0, 2, 10)]}

regressor = RandomizedSearchCV(KernelRidge(), param_distributions=param_grid_krr, n_
→˓iter=7, cv=2)

config = {
# estimators
'sklearn.svm.SVC': {

"C": Real(1e-6, 20.),
"gamma": Real(1e-6, 10.),

(continues on next page)
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"tol": Real(1e-6, 10.),
"class_weight": HDReal((1.e-5, 1.e-5), (20., 20.))

},
'sklearn.svm.NuSVC': {

'nu': Real(1.e-5, 1.),
"gamma": Real(1e-6, 10.),
"tol": Real(1e-6, 10.),
"class_weight": HDReal((1.e-5, 1.e-5), (20., 20.))

},
# preprocessing
'sklearn.preprocessing.StandardScaler': {

'with_mean': Categorical([True, False]),
'with_std': Categorical([True, False]),

},
'sklearn.feature_selection.VarianceThreshold': {

'threshold': Real(0., .3)
},
'sklearn.preprocessing.Normalizer': {

'norm': Categorical(['l1', 'l2', 'max'])
},

}

MLTr = mltrack('sample', db_name="sample.db")
X, y = MLTr.get_data()

A_svm = AML(config=config, length=3, check_point='./svm/', verbose=1)
A_svm.eoa_fit(X, y, max_generation=10, num_parents=10)
print(A_svm.get_top(4))

Which results in:

OrderedDict([(('sklearn.feature_selection.VarianceThreshold',
'sklearn.preprocessing.Normalizer',
'sklearn.svm.SVC'),

(Pipeline(memory=None,
steps=[('stp_0', VarianceThreshold(threshold=0.20066923736000097)), (

→˓'stp_1', Normalizer(copy=True, norm='l2')), ('stp_2', SVC(C=15.110221076172207,
→˓cache_size=200,

class_weight={0.0: 13.581338880577112, 1.0: 3.1546898782179706},
coef0=0.0, decision_function_shape='ovr', degree=3, gamma=10.0,
kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=1e-06, verbose=False))]),

-0.9253333333333333)),
(('sklearn.preprocessing.StandardScaler',

'sklearn.preprocessing.Normalizer',
'sklearn.svm.SVC'),

(Pipeline(memory=None,
steps=[('stp_0', StandardScaler(copy=True, with_mean=True, with_

→˓std=False)), ('stp_1', Normalizer(copy=True, norm='l1')), ('stp_2', SVC(C=14.
→˓396152757785778, cache_size=200,

class_weight={0.0: 11.644799650485178, 1.0: 14.834346896165036},
coef0=0.0, decision_function_shape='ovr', degree=3,
gamma=1.387860853481898, kernel='rbf', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=1.3386685658572253,

→˓verbose=False))]),
-0.9253333333333333)),

(continues on next page)
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(('sklearn.svm.NuSVC',
'sklearn.preprocessing.Normalizer',
'sklearn.svm.SVC'),

(Pipeline(memory=None,
steps=[('stp_0', StackingEstimator(decision=True,

estimator=NuSVC(cache_size=200,
class_weight={0.0: 16.514247793012903, 1.0: 19.743755570932407},
coef0=0.0, decision_function_shape='ovr', degree=3,
gamma=2.879810799993445, kernel='rbf', max_iter=-1,
nu=5.366323874825201e-05, pr...robability=False,
random_state=None, shrinking=True, tol=0.0002612195258127529,
verbose=False))]), -0.9226666666666666)),

(('sklearn.feature_selection.VarianceThreshold',
'sklearn.preprocessing.Normalizer',
'sklearn.svm.NuSVC'),

(Pipeline(memory=None,
steps=[('stp_0', VarianceThreshold(threshold=0.10372588511430014)), (

→˓'stp_1', Normalizer(copy=True, norm='l2')), ('stp_2', NuSVC(cache_size=200,
class_weight={0.0: 4.756565216129669, 1.0: 14.36176825433476},
coef0=0.0, decision_function_shape='ovr', degree=3,
gamma=5.437271690133034, kernel='rbf', max_iter=-1,
nu=0.6557563687772239, probability=False, random_state=None,
shrinking=True, tol=2.1918030657741365, verbose=False))]),

-0.9186666666666666)))])

And for SGDClassifier:

import numpy as np
from SKSurrogate import *
import warnings
warnings.filterwarnings("ignore", category=Warning)

from sklearn.model_selection import RandomizedSearchCV
from sklearn.kernel_ridge import KernelRidge
from sklearn.gaussian_process.kernels import Matern, Sum, ExpSineSquared
param_grid_krr = {"alpha": np.logspace(-4, 0, 5),

"kernel": [Sum(Matern(), ExpSineSquared(l, p))
for l in np.logspace(-2, 2, 10)
for p in np.logspace(0, 2, 10)]}

regressor = RandomizedSearchCV(KernelRidge(), param_distributions=param_grid_krr, n_
→˓iter=7, cv=2)

config = {
# estimators
'sklearn.linear_model.SGDClassifier': {

'loss': Categorical(['hinge', 'log', 'modified_huber', 'squared_hinge',
→˓'perceptron']),

'penalty': Categorical(['none', 'l2', 'l1', 'elasticnet']),
'alpha': Real(1.e-5, .9999),
'l1_ratio': Real(0., 1.),
'tol': Real(1.e-5, 1.),
'class_weight': HDReal((1.e-5, 1.e-5), (20., 20.))

},
# preprocessing
'sklearn.preprocessing.StandardScaler': {

'with_mean': Categorical([True, False]),
'with_std': Categorical([True, False]),

(continues on next page)
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},
'sklearn.feature_selection.VarianceThreshold': {

'threshold': Real(0., .3)
},
'sklearn.preprocessing.Normalizer': {

'norm': Categorical(['l1', 'l2', 'max'])
},
# Transformers
'sklearn.kernel_approximation.Nystroem': {

'kernel': Categorical(['rbf', 'poly', 'sigmoid']),
'gamma': Real(1.e-6, 10.),
'n_components': Integer(10, 120)

},
'sklearn.kernel_approximation.RBFSampler': {

'gamma': Real(1.e-6, 10.),
'n_components': Integer(10, 120)

},
}

MLTr = mltrack('sample', db_name="sample.db")
X, y = MLTr.get_data()

A_sgd = AML(config=config, length=3, check_point='./svm/', verbose=2)#, cat_cols=[5])
A_sgd.fit(X, y)
print(A_sgd.get_top(4))

Which results in:

OrderedDict([(('sklearn.linear_model.SGDClassifier',
'sklearn.kernel_approximation.Nystroem',
'sklearn.linear_model.SGDClassifier'),

(Pipeline(memory=None,
steps=[('stp_0', StackingEstimator(decision=True,

estimator=SGDClassifier(alpha=1.0186882143892309e-05,
→˓average=False,

class_weight={0.0: 1e-05, 1.0: 1e-05}, early_stopping=False,
epsilon=0.1, eta0=0.0, fit_intercept=True,
l1_ratio=0.16668760571866542, learning_rate='op...om_state=None,

→˓ shuffle=True,
tol=1.0, validation_fraction=0.1, verbose=0, warm_

→˓start=False))]),
-0.8946666666666667)),

(('sklearn.preprocessing.Normalizer',
'sklearn.kernel_approximation.RBFSampler',
'sklearn.linear_model.SGDClassifier'),

(Pipeline(memory=None,
steps=[('stp_0', Normalizer(copy=True, norm='l1')), ('stp_1',

→˓RBFSampler(gamma=5.09346829872262, n_components=120, random_state=None)), ('stp_2',
→˓SGDClassifier(alpha=1e-05, average=False,

class_weight={0.0: 6.299501235657723, 1.0: 14.399482243823948},
early_stopping=False, epsilon=0.1,..._state=None, shuffle=True,
tol=1e-05, validation_fraction=0.1, verbose=0, warm_

→˓start=False))]),
-0.8946666666666667)),

(('sklearn.kernel_approximation.Nystroem',
'sklearn.preprocessing.Normalizer',

(continues on next page)
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'sklearn.linear_model.SGDClassifier'),
(Pipeline(memory=None,

steps=[('stp_0', Nystroem(coef0=None, degree=None, gamma=7.
→˓102137254366565, kernel='poly',

kernel_params=None, n_components=51, random_state=None)), ('stp_1
→˓', Normalizer(copy=True, norm='l2')), ('stp_2', SGDClassifier(alpha=0.
→˓4030001737762923, average=False,

class_weight={0.0: 16.5900487...shuffle=True, tol=0.
→˓6700383879862661,

validation_fraction=0.1, verbose=0, warm_start=False))]),
-0.8906666666666667)),

(('sklearn.preprocessing.Normalizer',
'sklearn.kernel_approximation.Nystroem',
'sklearn.linear_model.SGDClassifier'),

(Pipeline(memory=None,
steps=[('stp_0', Normalizer(copy=True, norm='l2')), ('stp_1',

→˓Nystroem(coef0=None, degree=None, gamma=5.928661960771689, kernel='poly',
kernel_params=None, n_components=117, random_state=None)), ('stp_2

→˓', SGDClassifier(alpha=0.5112964074641659, average=False,
class_weight={0.0: 3.2816638...shuffle=True, tol=0.

→˓7276228102426916,
validation_fraction=0.1, verbose=0, warm_start=False))]),

-0.884))])

This shows a 3.06% loss in accuracy

40 Chapter 10. A machine learning progress tracker



CHAPTER 11

Code Documentation

11.1 Surrogate Random Search

This module provides basic functionality to optimize an expensive black-box function based on Surrogate Random
Search. The Structured Random Search (SRS) method attempts to approximate an optimal solution to the following

minimize 𝑓(𝑥)

subject to 𝑔𝑖(𝑥) ≥ 0 𝑖 = 1, . . . ,𝑚,

where arbitrary evaluations of 𝑓 is not a viable option. The original random search itself is guarantee to converge to a
local solution, but the convergence is usually very slow and most information about 𝑓 is dismissed except for the best
candidate. SRS tries to use all information acquired about 𝑓 so far during the iterations. At 𝑖𝑡ℎ round of iteration SRS
replaces 𝑓 by a surrogate 𝑓𝑖 that enjoys many nice analytical properties which make its optimization an easier task to
overcome. Then by solving the above optimization problem with 𝑓 replaced by 𝑓 one gets a more informed candidate
𝑥𝑖 for the next iteration. If a certain number of iterations do not result in a better candidate, the method returns to
random sampling to collect more information about 𝑓 . The surrogate function 𝑓𝑖 can be found in many ways such as
(non)linear regression, Gaussian process regression, etc. and SurrogateSearch do not have a preference. But by default
it uses a polynomial regression of degree 3 if no regressor is provided. Any regressor following the architecture of
scikit-learn is acceptable. Note that regressors usually require a minimum number of data points to function properly.

There are various ways for sampling a random point in feasible space which affects the performance of SRS. Surro-
gateSearch implements two methods: BoxSample and SphereSample. One can choose whether to shrink the volume
of the box or sphere that the sample is selected from too.

class structsearch.BaseSample(**kwargs)
This is the base class for various sampling methods.

Parameters

• init_radius – optional (default=2.); positive real number indicating the initial radius
of the local search ball.

• contraction – optional (default=.0); the contraction factor which must be a positive
real less than 1.

• ineq – optional; a list of functions whose positivity region will be the acceptable condition.
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• bounds – optional; the list of (ordered) tuples determining the bound of each component.

check_constraints(point)
Checks constraints on the sample if provided

Parameters point – the candidate to be checked

Returns boolean True or False for if all constraints hold or not.

class structsearch.BoxSample(**kwargs)
Generates samples out of a box around a given center.

Parameters

• init_radius – float the initial half-length of the edges of the sampling box; default: 2.

• contraction – float the contraction factor for repeated sampling.

sample(centre, cntrctn=1.0)
Samples a point out of a box centered at centre

Parameters

• centre – numpy.array the center of the box

• cntrctn – float customized contraction factor

Returns numpy.array a new sample

class structsearch.Categorical(items, **kwargs)
A list of possible values fr the search algorithm to choose from.

Parameters items – A list of possible values for a parameter

class structsearch.CompactSample(**kwargs)
Generates samples uniformly out of a box.

sample(centre, cntrctn=1.0)
Samples a point out of a box centered at centre

Parameters

• centre – numpy.array the center of the box

• cntrctn – float customized contraction factor

Returns numpy.array a new sample

class structsearch.HDReal(a, b, **kwargs)
An n dimensional box of real numbers corresponding to the classification groups (e.g. class_weight). a is the
list of lower bounds and b is the list of upper bounds.

Parameters

• a – a tuple of lower bounds for each dimension

• b – a tuple of upper bounds for each dimension

class structsearch.Integer(a=None, b=None, **kwargs)
The range of possible values for an integer variable; a is the minimum and b is the maximum. Defaults are +
and - infinity.

Parameters

• a – the lower bound for the integer interval defined by instance (accepting ‘-numpy.inf’)

• b – the upper bound for the integer interval defined by instance (accepting ‘numpy.inf’)
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class structsearch.Real(a=None, b=None, **kwargs)
The range of possible values for a real variable; a is the minimum and b is the maximum. Defaults are + and -
infinity.

Parameters

• a – the lower bound for the (closed) interval defined by instance (accepting ‘-numpy.inf’)

• b – the upper bound for the (closed) interval defined by instance (accepting ‘numpy.inf’)

class structsearch.SphereSample(**kwargs)
Generates samples out of an sphere around a given center.

Parameters

• init_radius – float the initial radius of the sampling sphere; default: 2.

• contraction – float the contraction factor for repeated sampling.

sample(centre, cntrctn=1.0)
Samples a point out of an sphere centered at centre

Parameters

• centre – numpy.array the center of the sphere

• cntrctn – float customized contraction factor

Returns numpy.array a new sample

class structsearch.SurrogateRandomCV(estimator, params, scoring=None, fit_params=None,
n_jobs=-1, refit=True, cv=None, verbose=0,
pre_dispatch=’2*n_jobs’, error_score=’raise’, re-
turn_train_score=True, max_iter=50, min_evals=25,
regressor=None, sampling=<class ’struct-
search.CompactSample’>, radius=None, con-
traction=0.95, search_sphere=False, op-
timizer=’scipy’, scipy_solver=’SLSQP’,
task_name=’optim_task’, warm_start=True, Con-
tinue=False, max_itr_no_prog=10000, ineqs=(),
init=None)

Surrogate Random Search optimization over hyperparameters.

The parameters of the estimator used to apply these methods are optimized by cross-validated search over
parameter settings.

In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter
settings is sampled from the specified distributions. The number of parameter settings that are tried is given by
max_iter.

Parameters

• estimator – estimator object. An object of that type is instantiated for each search point.
This object is assumed to implement the scikit-learn estimator api. Either estimator needs
to provide a score function, or scoring must be passed.

• params – dict Dictionary with parameters names (string) as keys and domains as lists of
parameter ranges to try. Domains are either lists of categorical (string) values or 2 element
lists specifying a min and max for integer or float parameters

• scoring – string, callable or None, default=None A string (see model evaluation docu-
mentation) or a scorer callable object / function with signature scorer(estimator,
X, y). If None, the score method of the estimator is used.
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• max_iter – int, default=50 Number of parameter settings that are sampled. max_iter
trades off runtime vs quality of the solution. Consider increasing n_points if you want to
try more parameter settings in parallel.

• min_evals – int, default=25; Number of random evaluations before employing an ap-
proximation for the response surface.

• n_jobs – int, default=-1; number of processes to run in parallel

• fit_params – dict, optional; Parameters to pass to the fit method.

• pre_dispatch – int, or string, optional; Controls the number of jobs that get dispatched
during parallel execution. Reducing this number can be useful to avoid an explosion of
memory consumption when more jobs get dispatched than CPUs can process. This param-
eter can be:

– None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs

– An int, giving the exact number of total jobs that are spawned

– A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

• cv – int, cross-validation generator or an iterable, optional Determines the cross-validation
splitting strategy. Possible inputs for cv are:

– None, to use the default 3-fold cross validation,

– integer, to specify the number of folds in a (Stratified)KFold,

– An object to be used as a cross-validation generator.

– An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

• refit – boolean, default=True Refit the best estimator with the entire dataset. If “False”,
it is impossible to make predictions using this RandomizedSearchCV instance after fitting.

• verbose – int, default=0 Prints internal information about the progress of each iteration.

fit(X, y=None, groups=None, **fit_params)
Run fit with all sets of parameters.

Parameters

• X – array-like, shape = [n_samples, n_features] Training vector, where n_samples is the
number of samples and n_features is the number of features.

• y – array-like, shape = [n_samples] or [n_samples, n_output], optional; Target relative to
X for classification or regression; None for unsupervised learning.

• groups – array-like, with shape (n_samples,), optional; Group labels for the samples
used while splitting the dataset into train/test set.

• fit_params – dict of string -> object; Parameters passed to the fit method of the esti-
mator

Returns self

class structsearch.SurrogateSearch(objective, **kwargs)
An implementation of the Surrogate Random Search (SRS).

Parameters

44 Chapter 11. Code Documentation



SKSurrogate Documentation, Release 0.2.0

• objective – a callable, the function to be minimized

• ineq – a list of callables which represent the constraints (default: [])

• task_name – str a name to refer to the optimization task, store & restore previously ac-
quired (default: ‘optim_task’)

• bounds – a list of tuples of real numbers representing the bounds on each variable; default:
None

• max_iter – int the maximum number of iterations (default: 50)

• radius – float the initial radius of sampling region (default: 2.)

• contraction – float the rate of radius contraction (default: .9)

• sampling – the sampling method either BoxSample or SphereSample (default SphereSam-
ple)

• search_sphere – boolean whether to fit the surrogate function on a neighbourhood of
current candidate or over all sampled points (default: False)

• deg – int degree of polynomial regressor if one chooses to fit polynomial surrogates (de-
fault: 3)

• min_evals – int minimum number of samples before fitting a surrogate (default will be
calculated as if the surrogate is a polynomial of degree 3)

• regressor – a regressor (scikit-learn style) to find a surrogate

• scipy_solver – str the scipy solver (‘COBYLA’ or ‘SLSQP’) to solve the local opti-
mization problem at each iteration (default: ‘COBYLA’)

• max_itr_no_prog – int maximum number of iterations with no progress (default: infin-
ity)

• Continue – boolean continues the progress from where it has been interrupted (default:
False)

• warm_start – boolean use data from the previous attempts, but starts from the first itera-
tion (default: False)

• verbose – boolean whether to report the progress on commandline or not (default: False)

progress()
Generates matplotlib plots that represent distributions of each variable and the progress in minimization.

Returns objective’s process plot, variables’ distributions

11.2 Evolutionary Optimization Algorithm

class eoa.EOA(population, fitness, **kwargs)
This is a base class acting as an umbrella to perform an evolutionary optimization algorithm.

Parameters

• population – The whole possible population as a list

• fitness – The fitness evaluation. Accepts an OrderedDict of individuals with their corre-
sponding fitness and updates their fitness

• init_pop – default=‘UniformRand‘; The python class that initiates the initial population
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• recomb – default=‘UniformCrossover‘; The python class that defines how to combine par-
ents to produce children

• mutation – default=‘Mutation‘; The python class that performs mutation on offspring
population

• termination – default=‘MaxGenTermination‘; The python class that determines the ter-
mination criterion

• elitism – default=‘Elites‘; The python class that decides how to handel elitism

• num_parents – The size of initial parents population

• parents_porp – default=0.1; The size of initial parents population given as a portion of
whole population (only used if num_parents is not given)

• elits_porp – default=0.2; The porportion of offspring to be replaced by elite parents

• mutation_prob – The probability that a component will be mutated (default: 0.05)

• kwargs –

class eoa.MaxGenTermination(**kwargs)
Termination condition: Whether the maximum number of generations has been reached or not

class eoa.UniformCrossover(**kwargs)
Recombination procedure.

class eoa.UniformRand(**kwargs)
Initial population initiation.

11.3 Hilbert Space based regression

exception NpyProximation.Error(*args)
Generic errors that may occur in the course of a run.

class NpyProximation.FunctionBasis
This class generates two typical basis of functions: Polynomials and Trigonometric

static Fourier(n, deg, l=1.0)
Returns the Fourier basis of degree deg in n variables with period l

Parameters

• n – number of variables

• deg – the maximum degree of trigonometric combinations in the basis

• l – the period

Returns the raw basis consists of trigonometric functions of degrees up to n

static Poly(n, deg)
Returns a basis consisting of polynomials in n variables of degree at most deg.

Parameters

• n – number of variables

• deg – highest degree of polynomials in the basis

Returns the raw basis consists of polynomials of degrees up to n
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class NpyProximation.FunctionSpace(dim=1, measure=None, basis=None)
A class tha facilitates a few types of computations over function spaces of type 𝐿2(𝑋,𝜇)

Parameters

• dim – the dimension of ‘X’ (default: 1)

• measure – an object of type Measure representing 𝜇

• basis – a finite basis of functions to construct a subset of 𝐿2(𝑋,𝜇)

FormBasis()
Call this method to generate the orthogonal basis corresponding to the given basis. The result will be
stored in a property called OrthBase which is a list of function that are orthogonal to each other with
respect to the measure measure over the given range domain.

Series(f)
Given a function f, this method finds and returns the coefficients of the series that approximates f as a
linear combination of the elements of the orthogonal basis 𝐵. In symbols

∑︀
𝑏∈𝐵⟨𝑓, 𝑏⟩𝑏.

Returns the list of coefficients ⟨𝑓, 𝑏⟩ for 𝑏 ∈ 𝐵

inner(f, g)
Computes the inner product of the two parameters with respect to the measure measure, i.e.,

∫︀
𝑋
𝑓 · 𝑔𝑑𝜇.

Parameters

• f – callable

• g – callable

Returns the quantity of
∫︀
𝑋
𝑓 · 𝑔𝑑𝜇

project(f, g)
Finds the projection of f on g with respect to the inner product induced by the measure measure.

Parameters

• f – callable

• g – callable

Returns the quantity of ⟨𝑓,𝑔⟩
‖𝑔‖2

𝑔

class NpyProximation.HilbertRegressor(deg=3, base=None, meas=None, fspace=None)
Regression using Hilbert Space techniques Scikit-Learn style.

Parameters

• deg – int, default=3 The degree of polynomial regression. Only used if base is None

• base – list, default = None a list of function to form an orthogonal function basis

• meas – NpyProximation.Measure, default = None the measure to form the 𝐿2(𝜇) space. If
None a discrete measure will be constructed based on fit inputs

• fspace – NpyProximation.FunctionBasis, default = None the function subspace of 𝐿2(𝜇),
if None it will be initiated according to self.meas

fit(X, y)

Parameters

• X – Training data

• y – Target values

Returns self
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predict(X)
Predict using the Hilbert regression method

Parameters X – Samples

Returns Returns predicted values

class NpyProximation.Measure(density=None, domain=None)
Constructs a measure 𝜇 based on density and domain.

Parameters

• density – the density over the domain: + if none is given, it assumes uniform distribution

– if a callable h is given, then 𝑑𝜇 = ℎ(𝑥)𝑑𝑥

– if a dictionary is given, then 𝜇 =
∑︀

𝑤𝑥𝛿𝑥 a discrete measure. The points 𝑥 are the keys
of the dictionary (tuples) and the weights 𝑤𝑥 are the values.

• domain – if density is a dictionary, it will be set by its keys. If callable, then domain must
be a list of tuples defining the domain’s box. If None is given, it will be set to [−1, 1]𝑛

integral(f)
Calculates

∫︀
𝑑𝑜𝑚𝑎𝑖𝑛

𝑓𝑑𝜇.

Parameters f – the integrand

Returns the value of the integral

norm(p, f)
Computes the norm-p of the f with respect to the current measure, i.e., (

∫︀
𝑑𝑜𝑚𝑎𝑖𝑛

|𝑓 |𝑝𝑑𝜇)1/𝑝.

Parameters

• p – a positive real number

• f – the function whose norm is desired.

Returns ‖𝑓‖𝑝,𝜇
class NpyProximation.Regression(points, dim=None)

Given a set of points, i.e., a list of tuples of the equal lengths P, this class computes the best approximation of a
function that fits the data, in the following sense:

• if no extra parameters is provided, meaning that an object is initiated like R = Regression(P) then
calling R.fit() returns the linear regression that fits the data.

• if at initiation the parameter deg=n is set, then R.fit() returns the polynomial regression of degree n.

• if a basis of functions provided by means of an OrthSystem object (R.SetOrthSys(orth)) then calling
R.fit() returns the best approximation that can be found using the basic functions of the orth object.

Parameters

• points – a list of points to be fitted or a callable to be approximated

• dim – dimension of the domain

SetFuncSpc(sys)
Sets the bases of the orthogonal basis

Parameters sys – orthsys.OrthSystem object.

Returns None
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Note: For technical reasons, the measure needs to be given via SetMeasure method. Otherwise, the
Lebesque measure on [−1, 1]𝑛 is assumed.

SetMeasure(meas)
Sets the default measure for approximation.

Parameters meas – a measure.Measure object

Returns None

fit()
Fits the best curve based on the optional provided orthogonal basis. If no basis is provided, it fits a
polynomial of a given degree (at initiation) :return: The fit.

11.4 Sensitivity Analysis

Sensitivity analysis of a dataset based on a fit, sklearn style. The core functionality is provided by SALib .

class sensapprx.CorrelationThreshold(threshold=0.7)
Selects a minimal set of features based on a given (Pearson) correlation threshold. The transformer omits the
maximum number features with a high correlation and makes sure that the remaining features are not correlated
behind the given threshold.

Parameters threshold – the threshold for selecting correlated pairs.

fit(X, y=None)
Finds the Pearson correlation among all features, selects the pairs with absolute value of correlation above
the given threshold and selects a minimal set of features with low correlation

Parameters

• X – Training data

• y – Target values (default: None)

Returns self

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

• X – numpy array of shape [n_samples, n_features]; Training set.

• y – numpy array of shape [n_samples]; Target values.

Returns Transformed array

class sensapprx.SensAprx(n_features_to_select=10, regressor=None, method=’sobol’, margin=0.2,
num_smpl=512, num_levels=6, grid_jump=1, num_resmpl=8, re-
duce=False, domain=None, probs=None)

Transform data to select the most secretive factors according to a regressor that fits the data.

Parameters

• n_features_to_select – int number of top features to be selected

• regressor – a sklearn style regressor to fit the data for sensitivity analysis
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• method – str the sensitivity analysis method; defalt ‘sobol’, other options are ‘morris’ and
‘delta-mmnt’

• margin – domain margine, default: .2

• num_smpl – number of samples to perform the analysis, default: 512

• num_levels – number of levels for morris analysis, default: 6

• grid_jump – grid jump for morris analysis, default: 1

• num_resmpl – number of resamples for moment independent analysis, default: 10

• reduce – whether to reduce the data points to uniques and calculate the averages of the
target or not, default: False

• domain – pre-calculated unique points, if none, and reduce is True then unique points will
be found

• probs – pre-calculated values associated to domain points

fit(X, y)
Fits the regressor to the data (X, y) and performs a sensitivity analysis on the result of the regression.

Parameters

• X – Training data

• y – Target values

Returns self

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

• X – numpy array of shape [n_samples, n_features]; Training set.

• y – numpy array of shape [n_samples]; Target values.

Returns Transformed array

11.5 Optimized Pipeline Detector

class aml.AML(config=None, length=5, scoring=’accuracy’, cat_cols=None, surrogates=None,
min_random_evals=15, cv=None, check_point=’./’, stack_res=True, stack_probs=True,
stack_decision=True, verbose=1, n_jobs=-1)

A class that accepts a nested dictionary with machine learning libraries as its keys and a dictionary of their
parameters and their ranges as value of each key and finds an optimum combination based on training data.

Parameters

• config – A dictionary whose keys are scikit-learn-style objects (as strings) and its corre-
sponding values are dictionaries of the parameters and their acceptable ranges/values

• length – default=5; Maximum number of objects in generated pipelines

• scoring – default=’accuracy’; The scoring method to be optimized. Must follow the
sklearn scoring signature

• cat_cols – default=None; The list of indices of categorical columns
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• surrogates – default=None; A list of 4-tuples determining surrogates. The first entity of
each tuple is a scikit-learn regressor and the 2nd entity is the number of iterations that this
surrogate needs to be estimated and optimized. The 3rd is the sampling strategy and the 4th
is the scipy.optimize solver

• min_random_evals – default=15; Number of randomly sampled initial values for hyper
parameters

• cv – default=‘ShuffleSplit(n_splits=3, test_size=.25); The cross validation method

• check_point – default=’./’; The path where the optimization results will be stored

• stack_res – default=True; StackingEstimator‘s ‘res

• stack_probs – default=True; StackingEstimator‘s ‘probs

• stack_decision – default=True; StackingEstimator‘s ‘decision

• verbose – default=1; Level of output details

• n_jobs – int, default=-1; number of processes to run in parallel

add_surrogate(estimator, itrs, sampling=None, optim=’L-BFGS-B’)
Adding a regressor for surrogate optimization procedure.

Parameters

• estimator – A scikit-learn style regressor

• itrs – Number of iterations the estimator needs to be fitted and optimized

• sampling – default= BoxSample; The sampling strategy (CompactSample, BoxSample
or SphereSample)

• optim – default=’L-BFGS-B’;‘scipy.optimize‘ solver

Returns None

eoa_fit(X, y, **kwargs)
Applies evolutionary optimization methods to find an optimum pipeline

Parameters

• X – Training data

• y – Corresponding observations

• kwargs – EOA parameters

Returns self

fit(X, y)
Generates and optimizes all legitimate pipelines. The best pipeline can be retrieved from
self.best_estimator_

Parameters

• X – Training data

• y – Corresponding observations

Returns self

get_top(num=5)
Finds the top n pipelines

Parameters num – Number of pipelines to be returned
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Returns An OrderedDict of top models

optimize_pipeline(seq, X, y)
Constructs and optimizes a pipeline according to the steps passed through seq which is a tuple of estimators
and transformers.

Parameters

• seq – the tuple of steps of the pipeline to be optimized

• X – numpy array of training features

• y – numpy array of training values

Returns the optimized pipeline and its score

types()
Recognizes the type of each estimator to determine proper placement of each

Returns None

class aml.StackingEstimator(estimator, res=True, probs=True, decision=True)
Meta-transformer for adding predictions and/or class probabilities as synthetic feature(s).

Parameters

• estimator – object with fit, predict, and predict_proba methods. The estimator to gener-
ate synthetic features from.

• res – True (default), stacks the final result of estimator

• probs – True (default), stacks probabilities calculated by estimator

• decision – True (default), stacks the result of decision function of the estimator

fit(X, y=None, **fit_params)
Fit the StackingEstimator meta-transformer.

Parameters

• X – array-like of shape (n_samples, n_features). The training input samples.

• y – array-like, shape (n_samples,). The target values (integers that correspond to classes
in classification, real numbers in regression).

• fit_params – Other estimator-specific parameters.

Returns self, object. Returns a copy of the estimator

set_params(**params)
Sets the sklearn related parameters for the estimator

Parameters params – parameters to be bassed to the estimator

Returns self

transform(X)
Transform data by adding two synthetic feature(s).

Parameters X – numpy ndarray, {n_samples, n_components}. New data, where n_samples is
the number of samples and n_components is the number of components.

Returns X_transformed: array-like, shape (n_samples, n_features + 1) or (n_samples,
n_features + 1 + n_classes) for classifier with predict_proba attribute; The transformed fea-
ture set.

52 Chapter 11. Code Documentation



SKSurrogate Documentation, Release 0.2.0

class aml.Words(letters, last=None, first=None, repeat=False)
This class takes a set as alphabet and generates words of a given length accordingly. A Words instant accepts
the following parameters:

Parameters

• letters – is a set of letters (symbols) to make up the words

• last – a subset of letters that are allowed to appear at the end of a word

• first – a set of words that can only appear at the beginning of a word

• repeat – whether consecutive occurrence of a letter is allowed

Generate(l)
Generates the set of legitimate words of length l

Parameters l – int, the length of words

Returns set of all legitimate words of length l
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